
Stable Motion and Distributed Topology Control

for Multi-Agent Systems with Directed Interactions

Pratik Mukherjee, Andrea Gasparri and Ryan K. Williams

Abstract— In this paper, we study stable coordination in multi-
agent systems with directed interactions, and apply the results
for distributed topology control. Our main contribution is to
extend the well-known potential-based control framework orig-
inally introduced for undirected networks to the case of net-
works modeled by a directed graph. Regardless of the particular
objective to be achieved, potential-based control for undirected
graphs is intrinsically stable. Briefly, this can be explained by
the positive semidefiniteness of the graph Laplacian induced
by the symmetric nature of the interactions. Unfortunately, this
energy finiteness guarantee no longer holds when a multi-agent
system lacks symmetry in pairwise interactions. In this context,
our contribution is twofold: i) we formalize stable coordination
of multi-agent systems on directed graphs, demonstrating the
graph structures that induce stability for a broad class of coor-
dination objectives; and ii) we design a topology control mech-
anism based on a distributed eigenvalue estimation algorithm
to enforce Lyapunov energy finiteness over the derived class
of stable graphs. Simulation results demonstrate a multi-agent
system on a directed graph performing topology control and
collision avoidance, corroborating the theoretical findings.

I. INTRODUCTION

Multi-agent coordination has been widely investigated by

the control community over the last two decades. A very

popular framework in the context of networked multi-agent

systems, used for achieving a large variety of collaborative

objectives, is the well-known potential-based control method-

ology. Representative examples of coordination problems

are for instance consensus agreement, self-localization, and

formation control [1]–[8], with applications ranging from

environmental monitoring to collaborative transportation. A

typical assumption that has been made over the years for

the design of these distributed algorithms is that pairwise

interactions among agents are symmetric, i.e., interactions

occur over an undirected graph. Unfortunately, this symmetry

assumption does not always reflect the actual capabilities of

networked systems, especially when the pairwise interactions

involve relative sensing among agents.

In this work, our goal is to relax the symmetry assumption by

allowing communication to remain isotropic, but with sensing

that may be anisotropic. This implies that while interactions

occurring through communication may still be undirected,

interactions occurring through relative sensing are directed in
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nature. We point out that this assumption better reflects typical

hardware features of robotic units, where it is reasonable to

assume that over the range of visibility of a sensing device, the

communication radio may have an isotropic radiation lobe.

In particular, we focus on extending the potential-field con-

trol framework originally introduced for undirected networks

to the case of networks modeled by a directed graph. Indeed,

while this control design methodology has proven very success-

ful for a wide array of applications in the context of undirected

networks, it can no longer be applied to the case of directed

networks as is. Intuitively, this can be explained by the fact that

potential-based control for undirected graphs is intrinsically

stable, i.e., the Lyapunov energy remains finite over time,

independent of the particular graph topology. This fact is a

consequence of the symmetric nature of the interactions, and

formally, is due to the positive semidefiniteness of the graph

Laplacian that describes the system energy. Clearly, the lack

of symmetry suddenly breaks this negative semi-definiteness

of the Lyapunov derivative, and the system can no longer be

claimed to be stable for all topologies.

Some closely related work to this paper can be summarized

as follows. In [9], the authors introduce an edge variant of

the well-known consensus protocol for undirected graphs,

referred to as the edge agreement problem, for which the

dynamics evolve according to the edge Laplacian. In [10], the

authors propose a quadratic Lyapunov function that utilizes the

structure of the underlying communication topology and the

spectral properties of the corresponding edge Laplacian matrix

to prove consensus with quantized relative state measurements.

Very recently in [11], the authors address the edge agreement

problem of second-order non-linear multi-agent systems under

quantized measurements for directed graphs. In particular,

convergence results are given for quasi-strongly connected

graphs, that is graphs for which a directed spanning tree

exists. Various prior works such as [12] have demonstrated

multi-agent systems over directed networks, often with the

assumption that the graph is strongly connected. Topology

control for directed graphs in comparison is very sparse; the

most relevant examples are [13], [14], which each require

certain assumptions regarding agents’ regions of interaction.

In this context, our contribution is twofold: i) we study stable

coordination for directed graphs in the potential-based control

framework, demonstrating the graph structures that induce

stability for a broad class of coordination objectives; and ii)

we design a topology control mechanism and a distributed

eigenvalue estimation algorithm to enforce Lyapunov energy

finiteness based on the class of stable graphs. Simulation results

are provided to corroborate the theoretical findings.



II. PRELIMINARIES

A. Agent and Network Modeling

Consider a multi-agent system composed of n agents,

each having motion that evolves according to the following

dynamics

ẋi(t) = ui(t) (1)

with xi(t) ∈ R
d the agent state (position), ui(t) ∈ R

d the

control input, and time t ∈ R≥0. Stacking agent states and

inputs yields the overall system

ẋ(t) = u(t) (2)

with x(t) = [x1(t), . . . , xn(t)]
T ∈ R

nd and u(t) =
[u1(t), . . . , un(t)]

T ∈ R
nd the stacked vector of states and

control inputs, respectively1. The distance between agents i and

j is denoted by ‖xij(t)‖, ‖xi(t)− xj(t)‖, with the standard

Euclidean norm.

We define two radii ρs(i), ρc(i) ∈ R+, ∀ i ∈ {1, . . . , n},

within which sensing and communication can occur for each

agent, respectively. A dynamic directed graph is denoted by

G(t) , (V, E(t)) with node set V , [v1, ..., vn] and edge set

E(t) ⊆ V×V . We can define the sensing graph as Gs = (V, Es)
with edges Es = {(i, j) | ‖xij‖≤ ρs(i), i, j ∈ V} and

the communication graph Gc = (V, Ec) with edges

Ec = {(i, j) | ‖xij‖≤ ρc(i), i, j ∈ V}.

Denote by N+
i (t) := {j ∈ V : (i, j) ∈ E(t)} the set of out-

neighbors of agent i and N−
i (t) := {j ∈ V : (j, i) ∈ E(t)}

the set of in-neighbors with the assumption that (i, i) /∈ E .

The incidence matrix is defined as B(G(t)) ∈ R
n×|E| of a

graph G.The outgoing incidence matrix B+ contains only the

outgoing parts of the incidence matrix B, with incoming parts

set to zero. The undirected Laplacian matrix L ∈ R
n×n is

obtained as L = BBT , whereas the directed Laplacian matrix

Ld ∈ R
n×n is computed as Ld = BBT

+. We will also make

use of the undirected edge Laplacian LE ∈ R
|E|×|E| defined

as LE = BTB and the directed edge Laplacian Ld
E ∈ R

|E|×|E|

given by Ld
E = BTB+. For properties of the edge Laplacian

see for example [9] and [11]. We will also apply the Kronecker

product, which we will denote in the standard manner with ⊗.

In this paper, we make the following assumption

Assumption 1: The communication radius ρc is sufficiently

large compared to the sensing radius ρs, such that weak

connectivity of Gs implies strong connectivity of Gc.

Here, we make this assumption to guarantee communication

can always support a distributed consensus algorithm for use

in topology control.

B. Potential-Based Control Framework Overview

Potential-based control design is a commonly used frame-

work for controlling multi-agent systems [1]–[5], [15]. The

basic idea is to encode the energy of a system as a potential

function V (x(t)) ∈ R≥0 such that the desired configurations

of the multi-agent system correspond to critical points. Thus, a

1Note that dependence on time, state, and/or a graph will only be shown
when introducing new concepts or symbols. Subsequent usage will drop these
dependencies for clarity of presentation.

control law can be designed to achieve these configurations by

driving the system along the anti-gradient u = −∇xV .

Control objectives that are pairwise, and thus distributed

across a multi-agent system, can be designed by asso-

ciating a (continuously differentiable2) potential function

Vij(x) , Vij(xi, xj) ∈ R≥0 with agents i and j, for which

the following properties hold

∇xi
Vij = ∇xi

Vji

∇xi
Vij = −∇xj

Vij

(3)

where we note that the first property above is a symmetry

condition. Then, the global potential function for the multi-

agent system can be considered

V =

n∑

i=1

∑

j 6=i

Vij (4)

where the anti-gradient control term

ui = −
∑

j∈Ni(t)

∇xi
Vij (5)

with undirected neighborhood Ni can be shown to drive the

system to a (local) minimum of the potential function V asymp-

totically over an undirected graph G. Most importantly, the

symmetry properties in (3) and symmetry in agent interactions

are critical in the derivation of the convergence result. In

this work, we will drop assumptions such as (3) and allow

agent interactions and potential-based controllers to exhibit

asymmetry.

III. DIRECTED CONTROL FRAMEWORK

A. Motivating Example

Continuing along the lines of Section II-B, for the undirected

case it is known that the system energy derivative is

V̇ ∼ −
n∑

i=1

∥∥∥∥∥∥
∑

j∈Ni

∇xi
Vij

∥∥∥∥∥∥

2

(6)

which by inspection means the system is inherently stable

because V̇ ≤ 0 for all graph topologies, which implies

energy finiteness and thus stability. In systems with asymmetric

interactions, this luxury is no longer present as there is often

a subset of graphs G for which the system lacks even the

stability property. A basic illustration of instability in an

asymmetric system is given in Figure 1. If the task for agent

2 is to maintain interactions with agents 1 and 3, but agent

1 and 3 progressively move away from agent 2, the system

is in some sense degenerate and an instability may occur.

Such degeneracies must be avoided at all costs as they may

threaten the predictability and safety of a system. It follows

that if we can identify the class of controllers and asymmetric

agent interactions that preserve our ability to encode desired

configurations with stable system energy, then we can for

example guarantee desirable topological properties (as in

Section III-E).

2A generalization to handle non-smooth potential functions can be found
in [15]. Here, for the sake of simplicity, smooth pairwise potentials are
assumed.
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Fig. 1. Three agents with asymmetric disks of interaction.

B. Encoding Topology in Directed Lyapunov Analysis

On a directed graph G the control input for the ith agent is

defined as

ui = −
∑

j∈N+

i

∇xi
Vij(‖xij‖) (7)

where the potentials Vij are smooth functions of inter-agent

distance ‖xij‖, and ∇xi
Vij = 0 for (i, j) /∈ E . Furthermore,

we assume potential smoothness continues to hold as the graph

G changes over time.

Now, let the Lyapunov function V : R
nd → R≥0 be a

continuously differentiable function, defined in the standard

manner:

V (x(t)) =

n∑

i=1

∑

j 6=i

Vij(‖xij‖) (8)

with time derivative

V̇ = (∇xV )
T
ẋ (9)

from simple application of the chain rule. For the directed

case, we will derive an edge-based form of ∇xV and ẋ that

will eventually reveal the graph topology. First, consider the

general form for the gradient of the Lyapunov function, given

by

∇xV =

n∑

i=1

∑

j∈N+

i

∇xVij (10)

and assuming a local property of potentials, ∇xi
Vji =

−∇xj
Vji we have

∇xV =


 ∑

j∈N+

1

∇x1
V1j −

∑

j∈N−
1

∇xj
Vj1, . . .

∑

j∈N+
n

∇xn
Vnj −

∑

j∈N−
n

∇xj
Vjn



T (11)

This motivates us to define the stacked vector of potential field

gradients, ξ ∈ R
d|E|, given by

ξ =
[
∇e1(1)Ve1 ,∇e2(1)Ve2 , . . . , ∇e|E|(1)Ve|E|

]T
(12)

where ek(1) denotes the starting vertex vi of the kth edge (i, j),
and thus ∇ek(1)Vek ∈ R

d denotes the gradient with respect to

xi of potential function Vij . Now, from (12) and (11), ∇xV
can be written as:

∇xV = (B⊗ Id) ξ (13)

with B the incidence matrix associated with the directed

sensing graph Gs as defined in Section II-A and Id the d× d
identity matrix. Similarly, we can proceed in computing ẋ as

ẋ = −


 ∑

j∈N+

1

∇x1
V1j, . . . ,

∑

j∈N+
n

∇xn
Vnj



T

(14)

Unlike before, (14) has contributions only from the starting

vertex of an edge and thus we can conclude that

ẋ = −(B+ ⊗ Id) ξ (15)

with B+ the outgoing portion of the incidence matrix associ-

ated with the directed sensing graph Gs as defined in Section II-

A.

At this point, by using (13) and (15), it follows that (9) can

be rewritten as:

V̇ = −
[
(B⊗ Id) ξ

]T [
(B+ ⊗ Id) ξ

]

= −ξT
[ (

BTB+

)
⊗ Id

]
ξ

= −ξT
[
Ld
E ⊗ Id

]
ξ

(16)

with Ld
E the directed edge Laplacian. As the directed edge

Laplacian is asymmetric and indefinite in general, studying

the Lyapunov stability of system (2) with controllers (7) is not

straightforward. This implies that topology control is needed

for the stability of directed systems, unlike undirected systems

where topology control only serves secondary objectives like

consensus, while motion is inherently stable3.

C. Stable Directed Topologies

Our goal now is to answer a fundamental question: assuming

general potential field controls, for which directed topologies

is a multi-agent system guaranteed to be stable? By general

potential field controls we mean having the form

ui(t) = −
∑

j∈N
+

i

∇xi
Vij = −

∑

j∈N
+

i

aij(‖xij(t)‖)xij (17)

where aij(‖xij(t)‖) ∈ R is a smooth, time-varying scalar

weight function that can take arbitrary values for edges (i, j) ∈
E , and where aij does not necessarily equal aji. Applying

the form (17) to the definition of ξ as in (12), we now have a

weighted version of ξ defined as

ξ = W (t)(BT ⊗ Id)x (18)

with W (t) = diag
([
ae1 , . . . , ae|E|

])
where it can be noticed

that further topological structure is given to the variable ξ. With

this redefinition, the time derivative of the Lyapunov function

is now

V̇ = −x
T
[(
BWLd

EWBT
)
⊗ Id

]
x (19)

3Recall that stability does not imply convergence to a desired equilibrium,
although our methods certainly do not preclude such convergence.



Notice that with the addition of the time-varying weight

matrix W , proving stability means it is necessary to prove that

for a every matrix W encoding a certain potential-based control

at any time t, the asymmetric matrix BWLd
EWBT ∈ R

n×n is

positive semidefinite. Instead, we want to know for any weight

matrix W if the system is stable. This question is captured by

the following result.

Lemma 3.1: For any W = diag
([
ae1 , . . . , ae|E|

])
∈

R
|E|×|E| associated with Gs, there exists Ŵ such that:

W (BT ⊗ Id) = (BT ⊗ Id) Ŵ (20)

whenever BTB , LE is invertible.

Proof: The above relation is valid when there exists a

right inverse, B−1
right = (B)(BTB)−1 and (BTB) is invertible.

Then Ŵ = (B)(BTB)−1W (BT ⊗ Id) such that

(BT ⊗ Id) Ŵ = (BT ⊗ Id)(B)(B
TB)−1W (BT ⊗ Id)

= (BT (B)(BTB)−1 ⊗ Id)W (BT ⊗ Id)

= W (BT ⊗ Id)

(21)

which yields the result.

Remark 3.1: Notice that the result is a sufficient condition.

The generality of the result, however, comes at the price

of a restricted class of stable topologies for which BTB is

invertible.

Next, by applying the above Lemma to (16), we obtain:

V̇ = −ξT
[ (

BTB+

)
⊗ Id

]
ξ

= −
[
(BT ⊗ Id)Ŵx

]T[ (
BTB+

)
⊗ Id

][
(BT ⊗ Id) Ŵx

]

= −z
T
[ (

LLT
d

)
︸ ︷︷ ︸

S

⊗ Id

]
z

(22)

with z = Ŵx ∈ R
nd and S ∈ R

n×n the structural Lypaunov

matrix, where by structural we refer to the fact that this matrix

is by construction compatible with the network sensing graph

Gs and independent of the system state between changes in Gs.

We now prove a result regarding the rank of the asymmetric

matrix S.

Lemma 3.2: The structural Lyapunov matrix S is rank-

compatible with the graph Gs in the sense that there exists

a direct relation between the rank of the S, and the rank of the

incidence matrix B of graph Gs.

Proof: Using Theorem 8.3.1 in [16] for a directed

graph Gs with n vertices and c connected components, it

is shown that the rank of the incidence matrix B is given

by Rank[B] = n − c where c is the dimension of the

null space of B. It is known that the structural Lyapunov

matrix is of the form shown in equation (22). Therefore, using

Theorem 8.3.1 and a simple property of the equality of the

rank of a matrix and the rank of its transpose, it can be stated

that Rank[B] = Rank[BT ] = Rank[B+]. From Lemma

3.1, it is known that the special class of graphs for which

stability can be proved using the structural Lyapunov matrix

are the ones with the equal number of edges and vertices or

graphs with more vertices than edges which means B is a

n × |E| matrix where n ≥ |E|. Now it can be shown that

Rank[BBT ] = Rank[B]. Let Z = BT and ZT = B. Suppose

x ∈ N(Z) where N(Z) is the null space of Z . Zx = 0 ⇒
ZTZx = 0 ⇒ x ∈ N(ZTZ). Hence N(Z) ⊆ N(ZTZ).
Now x ∈ N(ZTZ). Then ZTZx = 0 ⇒ xTZTZx = 0 ⇒
(Zx)T (Zx) = 0 ⇒ (Zx) = 0 ⇒ x ∈ N(Z). This implies

N(ZTZ) ⊆ N(ZT ) ⇒ dim(N(ZTZ)) = dim(N(ZT ))
Therefore, N(ZTZ) = N(Z)

⇒ Rank(ZTZ) = Rank(Z) = Rank(B)) = Rank(BBT )
(23)

Now, using a known property of matrices, it can be stated that

Rank(BBTB+) ≤ min(Rank(BBT ), Rank(B+)) which

implies Rank(BBTB+) ≤ Rank(BBT ) = Rank(B) =
Rank(B+). Further it can be stated that Rank(BBTB+B

T ) =
Rank(S) ≤ min(Rank(BBTB+), Rank(B)). If

Rank(BBTB+) = Rank(B) ⇒ Rank(S) ≤ Rank(B).
However, if Rank(BBTB+) < Rank(B) ⇒ Rank(S) ≤
Rank(BBTB+). Therefore, from this statement, it is now

known that the structural Lyapunov matrix has a direct relation

to the rank of the incidence matrix of Gs.

D. Stability Analysis

The Lyapunov time derivative in (22) is in a typical quadratic

form and the characteristics of this quadratic equation are

dependent on the properties of the structural Lyapunov matrix

S. The Lyapunov stability analysis is carried out on the sym-

metrized S, S+ = 1
2 (S + ST ), as positive semi-definiteness

of S+ implies positive semi-definiteness of S.

Theorem 3.1: Assuming the conditions for Lemma 3.1

hold, and 1/2[(BTB+) + (B+)
T (B)] is positive definite, the

system (1) with agent controls (17) is stable in the sense that if

V is initially finite it remains finite for all time t > 0.

Proof: To begin, consider the following:

S+ = 1/2[(BBTB+B
T ) + (BBTB+B

T )T ]

Since (BBT )T = BBT from Lemma 1

= 1/2B[(BTB+) + (B+)
T (B)]BT

C = 1/2[(BTB+) + (B+)
T (B)]

(24)

If C is a real positive definite symmetric matrix, then using

Cholesky decomposition, C = QQT is a product of lower

triangular matrix Q. S+ = B[C]BT = B[QQT ]BT =
BQ(BQ)T . Then take F = BQ and S+ = FFT . Now the

eigendecomposition of S+ is λ = vFFT vT = vF (vF )T .

Since λ can be written as the inner product of vector vF
by itself, λ ≥ 0 and so S+ has non-negative eigenvalues.

Since positive semi-definiteness of S+ implies positive semi-

definiteness of S, V̇ as defined in (22) is negative semi-definite

and if V is initially finite it will remain finite for all t > 0.

E. Topology Control

The previous section demonstrated the conditions for stable

potential-based controllers on directed sensing graphs. Re-

calling that stability required certain topological properties

of G to hold, we can demonstrate topology control for the



purpose of preserving stability. We proceed by first carefully

selecting sensing edges for the purposes of motion control.

We also emphasize that the previous work of the authors’ on

undirected topology control in [5] can be replicated to the

directed setting. The intuition of our above stability result is

that a network may have many sensing edges available to it, but

only a subset are appropriate for coordinated motion control

on directed graphs. This is a key factor differentiating directed

settings from undirected ones: all sensing graphs are inherently

stable in undirected settings, while the same does not hold in

directed settings. Thus, we allow the agents to differentiate

between the sensing graph Gs and a motion control graph

Gm, where Gm ⊆ Gs so that stable motion can be achieved

while exploiting all available sensing information (e.g., for

localization). For this section, we assume that all previously

described matrices are derived from the motion control graph

Gm. Our goal will then be to select Gm over time such that

coordinated motion is stable.

Thus, modifying [5] for a directed setting we have the

following control law for maintaining a desired topological

property P:

ui = −∇xi


 ∑

j∈N+

i

V o
ij +

∑

j∈Dd
i

V d
ij




= −∇xi
Ψi(‖xij‖)

(25)

where we consider a generalized coordination objective driven

by potential field V o
ij :R≥0 → R≥0. Choosing V d

ij → ∞
as ‖xij‖ → ρ2, where ρ2 is the outer radius of the agent

interactions described in [5] with decision set Dd
i containing

neighbors to keep according to P and neighbors that maintain

stable directed coordination, we can then ensure the overall

Lyapunov energy is stable. Specifically, notice from (25)

that we can write the actuation for agent i in the form

−∇xi
Ψi(‖xij‖), and thus choosing V o

ij and V d
ij appropriately

will yield a form aij(‖xij‖)xij for ui, allowing for direct

application of our stability result.

F. Distributed Eigenvalue Estimation

The online eigenvalue evaluation of the symmetrized struc-

tural Lyapunov matrix, S+ (or equivalently a symmetrized

BTB+), using the Lanczos Biorthogonalization algorithm is

now obtained in a decentralized manner.

The decentralized Lanczos Biorthogonalization algorithm,

shown in Algorithm 1, enables local evaluation of all the

global terms in the original centralized algorithm using the

surplus-based average consensus method (ASC) [17], under

Assumption 1 which guarantees strong connectivity of Gc and

thus consensus convergence (given certain parameters settings

defined in [17]). Since S+ is a symmetric matrix, Algorithm 1

is related to the decentralized algorithm of [18], however we

point out that our proposed algorithm has general applicability

also to asymmetric matrices. The decentralized eigenvalue

estimation in Algorithm 1 computes the coefficients, αj
k, βj

k

and δjk at every iteration j = 1, ...,M for the kth agent, which

are used to populate a tridiagonal matrix, TM
k for each agent k,

similar to TM . The eigenvalues of this matrix correspond to

Algorithm 1 Decentralized Lanczos Biorthogonalization

1: Choose two vectors v1, w1 such that dot(v1k, w
1
k) = 1

2: Set β1
k = δ1k ≡ 0 w0

k = v0k ≡ 0
3: for iteration j=1 to M Do:

4: for all nodes k do

5: s
(j)
k = ASCn[S

+v(j)]

6: q
(j)
k = ASCn[S

+T
w(j)]

7: α
(j)
k = ASC1[s

(j)
k , w

(j)
k ]

8: s
(j+1)
k = Local[s

(j)
k − β

(j)
k v

(j−1)
k − α

(j)
k v

(j)
k ]

9: q
(j+1)
k = Local[q

(j)
k − δ

(j)
k w

(j−1)
k − α

(j)
k w

(j)
k ]

10: δ
(j+1)
k =

√
K ∗ASC1[|(s

(j+1)
k , q

(j+1)
k )|].

11: If δ
(j+1)
k = 0 Stop

12: β
(j+1)
k = K ∗ASC1[(s

(j+1)
k , q

(j+1)
k )]/δ

(j+1)
k

13: v
(j+1)
k = Local[s

(j+1)
k /δ

(j+1)
k ]

14: w
(j+1)
k = Local[q

(j+1)
k /β

(j+1)
k ]

15: END do

16: END Do

the eigenvalues of the S+ matrix, and can be computed locally

using a simplified QR method in O(n) time.

To obtain the elements αj
k (principal diagonal), δjk (subdiag-

onal) and βj
k (superdiagonal) of the TM

k matrix distributively,

ASC for directed graphs is applied. The (ASC) algorithm is first

run n times, where n is equal to the total number of agents in

the graph, to obtain s
(j)
k and q

(j)
k for each agent k. Specifically,

computing S+v(j) or (S+)Tw(j) distributively by multiplying

the row elements of S+ or (S+)T with v(j) and w(j) will

require ASC to be executed n times such that a column vector

of size n is generated where each kth element of the newly

generated vector represents the kth agent’s element, with the

portion of rows of S+ that are local to each agent. Next, the

terms αj
k,δjk and βj

k are scalar global values in Algorithm 1

because they are derived by taking the dot product of individual

elements that are information available unique to each agent.

Therefore a single surplus-based average consensus, ASC1,

is run to obtain a common scalar value for each agent in a

decentralized manner. Now, once all the global information

is obtained using ASC, s
(j+1)
k , q

(j+1)
k , v

(j+1)
k , and w

(j+1)
k

can be computed locally by each agent, yielding a distributed

estimate for M eigenvalues of S+.

IV. SIMULATIONS

In this section, the results for the convergence the decen-

tralized Lanczos Biorthogonalization algorithm to the smallest

eigenvalue, 0, of the symmetrized Structural Lyapunov matrix,

S+ , over 10,000 random, directed graphs are presented.

In addition, a leader-follower objective is demonstrated on

a directed graph with both topology control and collision

avoidance.

In Fig. 2, the results of smallest eigenvalue estimation for

each individual agent as well as the mean squared error (MSE)

for the smallest eigenvalue for a Monte Carlo simulation

over 10,000 random connected graphs is generated. Fig. 2

clearly shows that the MSE of the smallest eigenvalue is less



Fig. 2. Mean Squared Error value of smallest eigenvalue for 6 agents and the
smallest eigenvalue plot for individual agents.

5 10 15 20 25 30 35

20

22

24

26

28

30

32

34

36

38

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a)

5 10 15 20 25 30 35 40

20

25

30

35

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b)

Fig. 3. Starting (a) and final (b) configurations for a multi-agent leader-
follower objective with collision avoidance and topology control on a time-
varying directed graph. Leaders are green, followers blue, and motion control
edges in red (other sensing edges removed for clarity).

than 1× 10−4. The accuracy obtained from the estimation of

the eigenvalues is sufficient for the purpose of this paper to

successfully distinguish between a stable and an unstable graph

topology. Fig. 3 demonstrates the working of the estimator in

a simulation of leader-following with 2 leaders (green) and

12 followers (blue), where the subset of edges for control in

Gm are depicted in red (other sensing edges in Gs omitted

for clarity). In addition to rendezvous with the leaders, the

previously outlined topology control mechanism and collision

avoidance are implemented (two opposing objectives), due to

the generality of the allowable potential field control. Fig. 3

demonstrates system stability as expected.

V. CONCLUSIONS

In this paper, we have derived the class of stable topologies

for general potential-based controllers on directed graphs. As

multi-agent systems on directed graphs can exhibit inherent

instabilities, the class of stable topologies is applied to inform a

topology control mechanism that acts to guarantee stability. A

distributed Lanczos Biorthogonalization is derived to estimate

topologies that are stable, and simulation results for both

distributed estimation and multi-agent control were given to

corroborate the theoretical findings.
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